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1. INTRODUCTION

Detecting the number of signals and estimating the parameters of the damped exponential
signals are important problems in signal processing. We formulate the problem as follows:

Let 41,92, .- -, Yn be a sample of size n, where y; is given by
M
yp = Y apexp(—sit + 27 fit) + € (1.1)
k=1

Here o4’s are unknown complex numbers called the amplitude of the kt* signal, fi's are
distinct real numbers lying between 0 and 1, s¢’s are the damping factors and are positive
real numbers, i = v/—1. {e} is a sequence of independent identically distributed random
variables with mean zero and finite variance for both the real and the imaginary part. The
real and imaginary part of {e} are assumed to be independent and normally distributed.
M, the number of signals is also assumed to be unknown. Given the sample of size n, the
problem is to estimate the unknown parameters a, Sk, fr for k =1, ... M and M also.

The estimation of the parameters of a damped exponential model (1.1) is an old problem
(Kay; 1987) and the readers are referred to Stoica (1993) for an extensive list of references.
Lots of methods for estimating the frequencies have been proposed by researchers over the
last twenty years. Among the notables, are the methods of Errikson et al. (1994), Kay
(1984), Kundu and Mitra (1995), Stoica and Nehorai (1989), Stoica et al. (1989), Tufts and
Kumaresan (1982) and Yan and Bressler (1993). All these methods of estimation assume
that the number of signals M is known. The aim of this paper is to estimate the number of
signals M, which is usually unknown, under the assumption that the number of signals can

be at most K, which is known in advance.

Woax and Kailath (1985) developed information theoretic criteria for detecting the num-
ber of signals received by a sensor array. Fuchs (1988) developed a criterion, based on the
perturbation analysis of the data auto correlation matrix, for detecting the number of sinu-
soids. More recently Reddy and Biradar (1993), following the information theoretic approach
to model selection developed a criterion for detecting the number of damped/undamped ex-
ponentials. The detection performance of these criteria were compared with that of Fuchs
(1988) and their results showed that the Minimum Description Length (MDL) criterion as
developed by them performs nearly same as that of Fuchs (1988). A more general infor-
mation theoretic criterion in model selection has been proposed by Zhao, Krishnaiah and
Bai (1986a, 1986b) called the Efficient Detection Criterion (EDC). Rao (1988) suggested
to use EDC to estimate the number of signals for damped or undamped case but he did
not perform any numerical experiments. It is known (Bai et. al; 1987) that the EDC give
consistent estimates for estimating the number of signals in undamped exponential signals,
although the same result is not applicable for damped exponential model. Kundu (1992)
gave a detailed comparison of the different information theoretic criteria for estimating the
number of undamped signals, but nowhere at least not known to the authors, the comparison
of the different information theoretic criteria exist for damped exponential model.

2




Note that for the damped exponential model the data sequence is pure noise as the sample
size goes to infinity. Therefore, one can’t obtain any asymptotically consistent estimate of
the number of signals. However, when the damping factor is not that first, it is hoped that
some good detection criterion can surely be obtained by suitable algorithms, which should
be able to estimate the number of signals reasonably well. That is the main aim of this

paper.

For the undamped exponential models all the information theoretic criterion can be writ-
ten in the form (2.8), where C, represents penalty function. It has to satisfy the conditions
given in (2.7). Note that, the penalty function C, goes to infinity for the undamped model
to give consistent estimate of the number of signals. For the damped model if C, goes to
infinity, then for large sample size any criterion will underestimate the number of signals.
In fact, the penalty function should go to zero as n tends to infinity. We modify C, for the
damped model and propose the modified information theoretic criteria where the penalty
function depends on the amplitude as well as the damping factor. If there is no damping fac-
tor it coincides with the information theoretic criteria for the undamped model. We obtain
the probability of the wrong detection. The probability of wrong detection depends on the
unknown parameters. We propose to use the bootstrap techniques to estimate the probabil-
ity of wrong detection for a particular penalty function. Once we estimate the probability of
wrong detection, we choose that penalty function for which the wrong detection is minimum.
Some simulations are performed to see the effectiveness of the proposed criterion.

The organization of the rest of the paper is as follows. In section 2 we introduce different
information theoretic criteria and propose the modified efficient detection criteria for the
damped model. The practical implementation procedures are provided in Section 3. In
Section 4 we present the numerical experiments and finally we draw conclusions in Section

5.

2. DIFFERENT INFORMATION THEORETIC CRITERIA

In this section we discuss the different information theoretic criteria for estimating the
number of signals of the damped exponential signal models. We introduce the Akaike Infor-
mation Criteria (AIC), Minimum Description Length (MDL) criteria and Efficient Detection

Criteria (EDC).

Let yi,...,yn be a sample of size n from the model (1.1). Let P, be the parameter that
ranges over all possible number of signals, i.e. P € {1,...,K }. Then the joint density
function of the data set can be written as

1 1&
F619) = e (=3 3o = ul0p ) 1)
where
0P = (aly"Wapysla"'asP)fl,"'1fp)
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and R
p(6p) = 5 axexp(—sit + 42 fit)

k=1
We now formulate the problem as follows; Given a set of n observations and a family of
models {f(y|6p);P = 1,..., K }, that is a parameterized family of probability densities

f(y|0p), our problem is to select the true one.

Posed this way, this problem is perfectly suited for using different information theoretic
criteria such as AIC, MDL or the EDC. The AIC, MDL and EDC criteria are known as
penalized likelihood method in the general statistical literature. Here a penalty function
is subtracted from the log-likelihood before it is maximized. This serves to penalize or
discourage the addition of more and more parameters. In this set up the best model would
be one for which the penalized likelihood is maximum. For the general problem on this topic
one can refer to Akaike (1973, 1974, 1978), Hannan and Quinn (1979), Rissanen (1978),
Schwartz (1983) ard Zhao et al. (1986a, 1986b).

Akaike (1973, 1974) proposed the Akaike Information Criterion (AIC). The AIC suggests
choosing M, an estimator of M, which minimizes the following expression;
AIC(P) = —logf(y|fp) + d(0p); (2.2)

for P=1,...,K, where fp is the maximum likelihood estimator (MLE) of 6p and d(fp) is
the number of independent parameters of the parameter vector fp.

Akaike’s basic idea was to choose the model that minimizes the mean of the Kullback-
Leibler distance between the true density f(y|fp) and the estimated density f(y|0p). Since
the distance is unknown, he proposed to estimate it by the log-likelihood of the MLE. The
second term in (2.2) was added to make the log-likelihood at the MLE an unbiased estimator

of the Kullback-Leibler distance.

In the exponential signals model, with the assumption of the Gaussian error the AIC
takes the following form;

AIC(P) = —nlogRp — 8P (2.3)
(see Rao; 1988), where Rp, denotes the minimum value of
> lye — m(0R)* (2.4)
t=1
and the minimization is performed with respect to ai,...,ap,S1,---, 5P, fiy--o, fp-

Minimum Description Length (MDL) criterion was introduced by Rissanen (1978). The
basic idea is that the best model is the one that provides the shortest description of the
data. It has been shown (Rissanen; 1983) that for large samples this criterion leads to the

selection of the model that minimizes

MDL(P) = ~logf (yl6) + -;—d(Gp)logn (2.5)
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for P=1,...,K, where f(ylép) and d(fp) are as defined before.

Schwartz (1978) suggested a model selection approach based on Bayesian arguments.
Assuming a priori probabilities for every competing model, he proposed selecting the model
that maximizes the posterior probability. It has been shown that for a model belonging to an
exponential family, the maximization of the posterior probability leads to the minimization

of the criterion given by (2.5) asymptotically.

The Efficient Detection Criterion (EDC) method of Zhao et al. (1986a, 1986b) consists
of choosing as an estimator of M, the number M, which minimizes

EDC(P) = —logf(y|fp) + Cnd(6p) (2:6)
for P=1,...,K, where Cy,’s are such that

lim,,_m,—ci'- =0 and limn_.,oo—cl'— = 00 (2.7)
n loglogn

In the exponential signal model, with the assumption of Gaussian error, the EDC takes the
following form (see Rao; 1988)

EDC(P) = —nlogRp — Cx(8P) (2.8)

Observe that MDL criterion is a special case of the EDC. For MDL, C, takes the value %
log n in (2.8). The estimators of M, obtained from (2.8) are strongly consistent for the
undamped exponential model. For a detailed proof of the consistency for the undamped
model see Bai et al. (1987). For the damped model however the consistency results do not
hold, therefore it is important to observe the behavior of the different information theoretic

criteria in this situation at least for small samples.

Now we try to analyze what kind of problem we might encounter if we directly use (2.8)
for estimating the number of signals for damped exponential model. Note that, (2.7) implies
C,, tends to infinity as n tends to infinity. Suppose, M is the correct order model, then Cp

should be such that

EDC(M) < EDC(P); for P=1,...,.K,P# M. (2.9)
Now (2.9) implies
nlogRuy + Cn(8M) < nlogRp + C,.(8P); for P=1,...,K,P#M. (2.10)
Since R, > Rp > ... > Rk almost surely, (2.10) implies that C,, must satisfy
Ry ) R
nlo < 8C, < nlo ( ) 2.11
g ( R 9\ &, (2.11)




For undamped model

. Rum . Ry
lim =1, and li >1 2.12
n—00 RM+1 n—»r{olo RM ( )
for damped model
. R Ry -
lim —2- =1, and lim = =1 (2.13)
n—o0o RM+1 n—oo M
Because of the damped factor, note that for large n,
Rum-1 — —-én
E— =140 (6 ) (214)

where 6 = max {s;,...,sm} > 0. If we divide by loglogn in (2.11) and take the limit, we
obtain

.00 =38 lim logcl’;gn < nlg{.lo nlog (1 +0 (6_6")) =0 (2.15)

Therefore, if C,, tends to infinity, for large n, (2.11) may not satisfy. On the other hand it
looks more reasonable that the penalty function should be more if the amplitudes are more
(suggested by a referee). Based on the above observations, we propose the following modified

EDC (MEDC) for the damped model
MEDC(P) = —nlogRp — ACne~""(8P) (2.16)

here A = maz{A,,...,Am} and § = maz{d;,...,0m}. If the damping factor is zero, then
MEDC coincides with the usual EDC. Note that we need to know A and J to implement
MEDC in practice. We will describe that in the next section.

3. PRACTICAL IMPLEMENTATION
Consider the following data matrix,
n - YL
A — . . .
Yn—L+1 -+ Yn

Here L is any integer such that K < L < N — K. Let us denote the matrix T = %A"A,
where ‘¥’ denotes the conjugate transpose of a matrix or of a vector. We obtain the spectral

decomposition of the matrix T as follows:

here 02 > ... > o}, are the ordered eigenvalues of T and Uj’s are the normalized eigenvalues

corresponding to 67.




_ Assuming the true order of the model is K (the maximum one), we estimate first the
K damping factors and the K amplitudes say 0; > ... > 0k and Ay,..., Ak respectively
by using the NSD method of Kundu and Mitra (1995) from T. Weuse d = 6, and 4 =

max{Ai,..., Am}. Note that the values of § and A depend on L, we provide some suggestions
to choose L in the next section.

For a given choice of Cy and from the estimated A and 6, we can compute MEDC(P)
for different values of P =1,..., K and choose M an estimate of M such that MEDC(M)

is minimum.
Note that we have a wide choice of Cy, but we would like to choose that C, so that
P(M # M) is minimum. First let’s compute P(M # M).
P(M#M) = P(M< M)+ P(M > M)
K

M-1
= Y PM=q+ Y PM=q)

q=0 qg=M+1
M-1
= Z P(MEDC(q) — MEDC(M) < 0)
q=0
K
+ Z P(MEDC(q) - MEDC(M) < 0)
g=M+1
M-1
= Z P(nlogR, — nlogRy > AC,e~"8(M - q))
q=0
K
+ 3. P(nlogRuy — nlogR, < AC,e~"8(q — M)) (3.1)
g=M+1

Unfortunately P(M # M) depends on the unknown model parameters. Without knowing the
original parameters we can’t calculate the theoretical probabilities. We would like to estimate
these probabilities with the help of the given sample and using the bootstrap technique. The
idea is as follows. From any particular realization of the model, we compute the matrix T and
obtain the corresponding eigenvalues and eigenvectors. We estimate the error variance o? by
averaging the last L — K eigenvalues of T, say o2. Now suppose using the penalty function
C.,, we estimate the order of the model as M (Crn). We generate n complex Gaussian random

variables with mean zero and variance o2, say €1,..-,€n. We obtain the new bootstrap

sample as
y{3=yt+e¢, for t=1,...,n.

Assuming M (C,) is the correct order model, we check for g < M (Cy), whether
nlog(R,) — nlog(Rum(c.)) > AC,e~*"8(M(C,) — ),

or, for ¢ > M(Cy), check whether
nlog(Ru(ca)) — nlog(Ry) < ACne~%"8(g — M(Cy))-,
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. Repeating the process, say B times, we can estimate (3.1). Finally we choose that C, for
which the estimated P(M # M) is minimum.

Some justifications regarding this kind of bootstrap estimates of (3.1) can be given. Note
that the realization of y? can be thought of coming from a model (1.1) with V(e) =~ 202
Note that for the damped exponential model ER:; for ¢ = 1,...,K is independent of o2
Therefore (3.1) remains invariant if we change the error variance from o? to 20°.

4. NUMERICAL EXPERIMENTS

In this section we present the Monte Carlo simulations done for small samples to compare
the different information theoretic criteria. All these computations have been done on HP —
9000, machine at the Indian Institute of Technology, Kanpur.

We consider four different models with different parameters and different standard devi-
ations of the error random variables. The four models are given as follows;

" Model 1y, = ™/ o(—001t+i2m(:52)) | o7/2(=002t+i27(42)8) 4 ¢,
Model 2y, = ™/* (—001t+i2m(.52)t) 4 om/2(=0.02t+i2m(50)t) 4 ¢,
Model 3y, = e/ (001 +i2m(.52)t) | o7/2(~0.03t+i2n(42)8) 4 ¢,
Model 4 g, =1+ o™ /4(—001t+i2n(52)t) | o7/ o(—0.02t+i2n(.50)8) |

The data are generated using the different standard deviation, viz ¢ = 0.01, 0.1, 0.5 and 1.0
and with different sample sizes n = 25, 50, 75 and 100. The random deviates are generated
with the help of the IMSL random deviate generator. For each of the four models one
hundred replications of the data set for different n and o are generated. Observe that in
Model 1 and Model 2, the amplitudes and the damping factors are kept fixed, whereas the
difference of the radian frequencies is more in Model 1 than in Model 2. Between Model 1
and Model 3, the amplitudes and the radian frequencies are kept fixed, whereas the difference
between the damping factor is more in Model 3 than in Model 1. Model 4 is a higher order
model than Models 1,2 or 3. As far as the estimation of frequencies are concerned, it is
known (Kundu and Mitra; 1995) that it is difficult to estimate the parameters in Model 2
than in Model 1 and similarly in Model 1 than in Model 3. No such comparison can be made
between Model 2 and Model 3. Between Model 4 and Model 2 it is expected that Model 2
will be easier than Model 4 as the number of parameters are more in Model 4 than that of
Model 2. It is expected that in estimating the number of signals also, the same pattern will

exist.

We compare the usual AIC and usual MDL with the proposed MEDC. Note that for AIC
and MDL, C, =1 and C,, = %logn respectively in (2.8). For MEDC, we take a varied choice
of C, satisfying (2.7) (except when C,, = 1) but diverging to infinity at different rates from
very slow to very fast. The different choices of C,, considered are as follows: C, =1, Cp = nt
. Cp =n5, Cp =n° C, =logn, Cy = (logn)?, C, = (logn)*,Cp, = (logn)*® Cy, = (nlogn)?,
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C,, = (nlogn)*3, Cy = (nlogn)® and Cy = 1 Jog n. It is assumed that for all the four models
the maximum number of signals is 6. First we assume that the model order is K = 6. Now
using the modified noise space decomposition method with L ~ min {N,20} we obtain the
estimates of A and d. Using that A and 6, we compute MEDC(P) from (2.16) for different
values of P = 1,...6 for a particular choice of C,. We obtain an estimate of 92 by averaging
the last (L — K) eigenvalues of AHA and also obtain an estimate of P(M # M ) as the
method suggested in the previous section. We take B = 100, in our calculations. The results
are reported in Tables 1-4. We report the percentage of under estimate (PUE), percentage
of correct estimate (PCE) and the percentage of over estimate (POE) for AIC, MDL and

MEDC over five hundred replications.

5. CONCLUSIONS:

In this paper we consider the problem of estimating the number of damped exponential
signals. We use different information theoretic criteria for estimating the number of signals.

We consider the AIC, MEDC and the MDL criteria for the detection problem. It is
well known that the AIC criteria does not provide the consistent estimates in general model
selection problem. This fact is well reflected in the results of the simulations given in Tables
1-4. Comparing the Tables 1-4 it is observed that, although the MEDC and MDL criteria
give consistent estimates for undamped signals model, the same can not be said for the
damped models. It is well known (Wu; 1981 and Kundy; 1994) that although it is possible
to estimate consistently the parameters of the undamped exponential model, but it is not
possible to obtain the consistent estimates of the parameters of the damped model. It may
not be surprising if we look at the damped model carefully. From the model it is clear (if the
damping factor is negative) as the sample size n increases the signal component vanishes to
zero and we left with the error components only. Therefore even if we increase the sample
sizes, we may not extract any more information about the signal parameters from the sample.
In fact the inconsistency is clearly indicated in the simulation results. It is observed that
the number of correct selections by different methods do not increase for a fixed o as n
increases. In fact for AIC and MDL in many cases they even decrease. For fixed n, as o
decreases, it is observed that for MDL and MEDC, the performances improve. This indicates
the consistency of the MDL and MEDC methods as o decreases to zero for fixed n. It is also
observed that for a fixed n as o increases the methods have a tendency to over estimate for
models 1 and 3, whereas they have a tendency to under estimate for model 2 and model 4.
Comapring the tables, it is observed that in most of the cases, for fixed n and o, the number
of correct detection is more in Table 1 than in Table 2, which is not very surprising as the
difference of the radian frequencies (|f1 — f2|) is more in model 1 than in model 2. This fact
was also seen for the undamped signals by Kundu (1992). Interestingly the number of correct
detection in Table 3 is more or less same as that of Table 1 although the difference in the
damping factor (|s; — s2|) is more in model 3 than in model 1. The difference in performance
is more marked if the two models differ significantly with respect to the frequencies. The
performance of most of the methods is much better for model 1 than that of model 2 if o

9




is.> 0.01. Between Model 2 and Model 4, the behavior are quite similar in nature for all
most all the cases considered, although the number of correct detection is more in Model 2

compared to Model 4. ‘

Now comparing the three methods it is quite clear that AIC does not work well for this
particular model. Our simulations show that for AIC the probability of correct detection
never exceeds .45 also the inconsistency of the AIC is very prominent. MDL criterion works
reasonably well if the error variance is not very high. If the error variance is high and the
difference of the radian frequencies is small (Model 2 and Model 4) then the performance
of MDL is also very poor. MEDC work very well if the error variance is low. It can detect
almost 90 to 100 percent for all the models considered if o < .1. If the error variance is
high, the performance drops significantly if the radian frequencies are close to each other. It
may not be very surprising, since if the radian frequencies are close to each other and the
error variance is high it is very difficult to estimate the unknown parameters by any methods.
Although, eventually as n tends to infinity MEDC also will give inconsistent estimates but at
Jeast for finite sample it works reasonably well and better than the existing known methods.
Therefore, even though MEDC are quite involved computationally compared to AIC or MDL,
it can be used to estimate the number of components for the damped exponential model.

Acknowledgments: The authors would like to thank two referees for their valuable sug-
gestions and to Professor Dr. Peter Naeve for his encouragements.
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Table 1

SS [ ITC o = .01 og=01 g =05 g=1.0
PUE PCE POE PUE PCE POE PUE PCE POE PUE PCE POE
MEDC | 0.0 .99 .01 00 .99 .01 03 .97 00 94 .52 .19
25 | AIC 0.0 .42 .58 0.0 .40 .60 00 .40 .60 00 .38 .62
MDL | 00 .86 .14 00 .86 .14 00 .83 .17 927 52 .21
MEDC | 00 1.0 .00 00 1.0 .00 00 .99 .01 10 .75 .15
50 | AIC 0.0 .33 .67 00 .35 .65 00 .33 .67 00 .36 .64
MDL | 00 .82 .18 00 .83 .17 00 .82 .18 10 .72 .18
MEDC | 00 .98 .02 00 .97 .03 04 .96 00 97 .49 .24
75 | AIC 00 .15 .8 00 .15 .85 00 .13 .87 00 .14 .86
MpL | 00 .77 .23 00 .77 .23 00 .75 .25 04 .76 .20
MEDC | 0.0 1.0 .00 00 1.0 .00 00 .98 .02 03 .74 .23
100| AIC 00 .16 .84 00 .16 .84 00 .12 .88 00 .14 .86
MDL | 00 .75 .25 0.0 .77 .23 00 .72 .28 03 .70 .27

Table 2

SS ITC o= .01 o =0.1 =0.5 c=1.0
PUE PCE POE | PUE PCE POE | PUE PCE POE PUE PCE POE
MEDC | .04 .96 .00 04 .90 .06 24 .16 .00 61 .39 .00
95 | AIC 00 .41 .59 0.0 .42 .58 66 .17 .17 60 .20 .20
MDL | .00 .84 .16 01 85 .14 76 24 .00 73 27 .00
MEDC | .00 1.0 .00 0.0 10 .00 15 .85 .01 51 .49 .00
50 | AIC 00 .28 .72 0.0 .28 .72 40 .13 47 50 .19 .31
MDL | .00 .84 .16 00 .85 .15 73 27 .00 72 28 .18
MEDC | .00 1.0 .00 02 .98 .00 17 .83 .00 29 .51 .00
75 | AIC 00 .13 .87 00 .13 .87 21 .07 .72 33 .18 49
MDL | .00 .78 .22 00 .79 .21 75 25 .00 77 .23 .00
MEDC | .00 1.0 .00 02 .98 .00 17 .83 .00 219 .51 .00
100 | AIC 00 .15 .85 | 00 .15 85 87 .07 .06 85 .13 .02
MDL | .00 .79 .21 0.0 .78 .22 80 .20 .00 78 22 .00
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Table 3

SS ITC o=.01 oc=01 o=0.5 c=1.0

PUE PCE POE | PUE PCE POE | PUE PCE POE PUE PCE POE

MEDC | .00 .98 .02 00 .98 .02 04 .96 .00 27 49 24

25 AIC 00 .40 .60 00 .40 .60 00 .38 .62 00 .41 .59
MDL | ..00 .86 .14 00 .86 .14 00 .85 .15 22 48 .30
MEDC | .00 1.0 .00 00 1.0 .00 00 .99 .01 09 .70 .21

50 AIC 00 .35 .65 .00 .33 .67 00 .33 .67 .00 .38 .62
MDL 00 .84 .16 00 .83 .17 00 .84 .16 12 .75 .13
MEDC | .00 1.0 .00 00 1.0 .00 00 .96 .04 04 .74 22

75 AIC 00 .15 .85 00 .15 .85 00 .15 .8 .00 .18 .82
MDL 00 .79 .21 00 .79 .21 00 .77 .23 04 75 21
MEDC | .00 1.0 .00 00 1.0 .00 00 .98 .02 03 .76 .21

100 | AIC 00 .16 .84 00 .14 .86 00 .16 .84 00 .16 .84
MDL 00 .77 .23 00 .77 .23 00 .70 .30 04 69 .27

Table 4
SS ITC c=.01 =01 =05 c=10

PUE PCE POE | PUE PCE POE | PUE PCE POE PUE PCE POE

MEDC| .00 1.0 .00 10 .78 .12 44 .56 .00 71 .29 .00

25 AIC 00 .38 .62 09 .31 .60 a7 11 12 84 .10 .06
MDL 00 .67 .39 49 .29 .22 85 .15 .00 82 .18 .00
MEDC 00 10 .00 00 1.0 .00 19 .81 .00 60 .40 .00

50 AIC 00 .33 .67 04 29 .67 73 .10 .17 88 .08 .04
MDL 00 .78 .22 49 .51 .00 58 .18 .24 81 .17 .02
MEDC 00 1.0 .00 02 .98 .00 19 .81 .00 63 .37 .00

75 AIC .00 .13 .87 00 .14 .86 37 .11 .52 45 .14 41
MDL 00 .65 .35 00 .68 .32 78 .22 .00 79 .21 .00
MEDC | .00 1.0 .00 05 .95 .00 19 .81 .00 65 .35 .00

100 | AIC 00 .10 .90 00 .09 91 81 .07 .12 93 .07 .00
MDL 00 .61 .39 00 .64 .36 83 .17 .00 83 .17 .00
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